Senin, 28 Februari 2011

AURORA

 AURORA
An aurora (plural: auroras or aurorae) is a natural light display in the sky, particularly in the polar regions, caused by the collision of charged particles directed by the Earth's magnetic field. An aurora is usually observed at night and typically occurs in the ionosphere. It is also referred to as a polar aurora or, collectively, as polar lights. These phenomena are commonly visible between 60 and 72 degrees north and south latitudes, which place them in a ring just within the Arctic and Antarctic polar circles.[citation needed] Auroras do occur deeper inside the polar regions, but these are infrequent and often invisible to the naked eye.
In northern latitudes, the effect is known as the aurora borealis (or the northern lights), named after the Roman goddess of dawn, Aurora, and the Greek name for the north wind, Boreas, by Pierre Gassendi in 1621.[1] The chance of visibility of the aurora borealis increases with proximity to the North Magnetic Pole.[citation needed] Auroras seen near the magnetic pole may be high overhead, but from farther away, they illuminate the northern horizon as a greenish glow or sometimes a faint red, as if the Sun were rising from an unusual direction. The aurora borealis most often occurs near the equinoxes. The northern lights have had a number of names throughout history. The Cree call this phenomenon the "Dance of the Spirits". In Europe, in the Middle Ages, the auroras were commonly believed a sign from God (see Wilfried Schröder, Das Phänomen des Polarlichts, Darmstadt 1984).
Its southern counterpart, the aurora australis (or the southern lights), has similar properties, but is only visible from high southern latitudes in Antarctica, South America, or Australasia. Australis is the Latin word for "of the South".
Auroras can be spotted throughout the world and on other planets. They are most visible closer to the poles due to the longer periods of darkness and the magnetic field.
Modern style guides recommend that the names of meteorological phenomena, such as aurora borealis, be uncapitalized.[2]

Auroras result from emissions of photons in the Earth's upper atmosphere, above 80 km (50 miles), from ionized nitrogen atoms regaining an electron, and oxygen and nitrogen atoms returning from an excited state to ground state. They are ionized or excited by the collision of solar wind particles being funneled down and accelerated along the Earth's magnetic field lines; excitation energy is lost by the emission of a photon of light, or by collision with another atom or molecule:
oxygen emissions
Green or brownish-red, depending on the amount of energy absorbed.
nitrogen emissions
Blue or red. Blue if the atom regains an electron after it has been ionized. Red if returning to ground state from an excited state.
Oxygen is unusual in terms of its return to ground state: it can take three quarters of a second to emit green light and up to two minutes to emit red. Collisions with other atoms or molecules will absorb the excitation energy and prevent emission. The very top of the atmosphere is both a higher percentage of oxygen, and so thin that such collisions are rare enough to allow time for oxygen to emit red. Collisions become more frequent progressing down into the atmosphere, so that red emissions do not have time to happen, and eventually even green light emissions are prevented.
This is why there is a colour differential with altitude; at high altitude oxygen red dominates, then oxygen green and nitrogen blue/red, then finally nitrogen blue/red when collisions prevent oxygen from emitting anything. Green is the most common of all auroras. Behind it is pink, a mixture of light green and red, followed by pure red, yellow (a mixture of red and green), and lastly pure blue.

Tidak ada komentar:

Posting Komentar